GPU-based Monte Carlo simulation for Carbon Ion Therapy

Xun Jia, Ph.D. Department of Radiation Oncology, UTSW

GPU

A specialized accelerator (personal super-computer)

Comparison CPU/GPU peak processing power

Comparison CPU/GPU performance in linear algebra solver

Jia et. al. *PMB*, **59**, R151(2014)

GPU Monte Carlo project

- Since 2009
- Utilize GPU to accelerate MC simulations in medical physics
 - Use appropriate physics model to maintain accuracy
 - Design GPU-friendly implementations for high efficiency
- Apply developed tools to solve medical physics problems in radiotherapy

GPU Monte Carlo project

A spectrum of GPU-based MC packages

2009	2011	2012	2014	2015
gDPM	gCTD	gPMC	goMC	goPMC
gbrivi	gMCDRR		gBMC	goCMC

- MV photon: gDPM, goMC
- Particle therapy: gPMC/goPMC, goCMC
- Brachytherapy: gBMC
- kV imaging: gMCDRR/gCTD
- Apply MC in different clinical and research problems
 - MC-based inverse plan optimization
 Li et. al. PMB, 60, 2903(2015)
 - Cone beam CT scatter estimation

Xu et. al. PMB, 60, 3567(2015)

CT dose calculation

Montanari et. al. *PMB*, 59, 1239(2014)

• Evaluation of brachytherapy dose accuracy Tian et. al. ABS meeting(2014)

Power of a GPU

- Visualize the invisible radiation
- Real-time simulation of photon dose delivery using machine log

Carbon MC

- Monte Carlo simulation for carbon therapy
- Goal: Develop a Monte Carlo particle transport simulation system using novel graphics-processing unit (GPU) for carbon beam radiotherapy research and clinic
- Targeted features
 - Accuracy: Particle transport simulations with MC
 - Efficiency: GPU-based parallel processing platform

Carbon MC

Targeted features (cont'd)

 Portability: OpenCL environment to maintain compatibility with different computational platforms

Versatility: Score different quantities (dose, LET, particle spectrum, positron emitting nuclei distribution ...)
 to support a variety of projects in physics, radiobiology, and clinic research

Core™ i7

goCMC

- goCMC: GPU OpenCL Carbon-therapy MC
 - Started Feb 2015
 - In collaboration with Dr. Katia Parodi in LMU
 - GPU platform in OpenCL
 - Development in progress

goCMC

- Particle transport simulation
 - Condensed history simulation for charged particle transport
 - Electrons locally deposit energy
 - Nuclear interaction
 - Continuously slowing down approximation for secondary charged particle
 - Ignore charged neutral particles
- Geometry: voxelized geometry
- Data-base:
 - Extracted from Geant4
 - Currently include C-H, C-O, C-C interactions
 - Tabulate total cross section, secondary particle yield, angular and energy distribution

goCMC Implementation

Simultaneous transport simulations of multiple charged particles

- Water phantom
 - Carbon beam $\sigma = 4 \, \text{mm}$

- Water-bone-water half slab phantom
 - 250 MeV/u, 5×5 cm² beam, 5 cm thick half bone-slab

- Positron emitter distribution
 - 250 MeV/u beam in water

Case #	Phantom	Energy (MeV/u)	Size	ΔR (mm)	ΔD (%)	Time (sec)
1	Water	100	Pencil-beam	0.1	1.3	21.5
2	Water	250	Pencil-beam	0.2	2.2	102.2
3	Water	400	Pencil-beam	0.4	2.4	206.3
4	Lung	200	5 × 5 cm ²			77.5
5	Bone	200	5 × 5 cm ²			45.3
6	Tissue	200	5 × 5 cm ²			47.5
7	Water-bone-water half slab	250	5 × 5 cm ²			46.2

10⁷ primary carbons, <1% average uncertainty
One NVidia GTX Titan: 2688 CUDA cores, 6GB memory

Summary

- GPU is a great tool to accelerate MC simulations
- On-going development of goCMC
 - Achieved computation time of mins with acceptible accuracy
- Next step
 - Fine tune physics model and parameters
 - Optimize implementation
 - Comprehensive validations

Acknowledgement

- All the team members
 - UTSW: Steve B. Jiang, Arnold Pompos, Nan Qin
 - LMU: Katia Parodi, Marco Pinto, Georgios Dedes

